
Cantor Minimal Systems
Im Bereich der topologischen Dynamik besteht in letzter Zeit ein erhebliches Interesse an Systemen, bei denen der zugrunde liegende topologische Raum eine Cantor-Menge ist. Solche Systeme sind von Natur aus kombinatorisch, und die bahnbrechenden Ideen von Anatoly Vershik ermöglichten ein kombinatorisches Modell, das sogenannte Bratteli-Vershik-Modell, für solche Systeme ohne nichttriviale geschlossene invariante Teilmengen.
Dieses Modell führte zu einer Konstruktion einer geordneten abelschen Gruppe, die eine algebraische Invariante des Systems ist und eine vollständige Klassifizierung solcher Systeme bis hin zur Orbit-Äquivalenz ermöglicht. Das Ziel dieses Buches ist es, dieses Klassifizierungsergebnis darzulegen und Ideen und Techniken zu entwickeln, die zu diesem Ergebnis führen.
Dieses Buch ist keine umfassende Abhandlung über das Gebiet, sondern richtet sich an Studenten und Forscher, die einige überraschende Verbindungen zwischen Dynamik und Algebra kennenlernen wollen. Das einzige erforderliche Hintergrundmaterial ist ein Grundkurs in Gruppentheorie und ein Grundkurs in allgemeiner Topologie.