Bewertung:

Das Buch ist eine Mischung aus strengen Geometriekonzepten und intuitivem Verständnis, die vor allem künftige Gymnasiallehrer anspricht. Allerdings leidet es unter organisatorischen Problemen und Darstellungsproblemen, die den Inhalt beeinträchtigen.
Vorteile:Solide Beweise, die die Geometrie beleuchten, wichtiger Lückenfüller unter den Geometrie-Lehrbüchern, ansprechend für künftige Gymnasiallehrer, gute Strenge, die auf fortgeschrittenes Verständnis drängt.
Nachteile:Unorganisierter Ansatz, fehlende algebraische Grundlagen für starre Transformationen, triviale Übungen, schlecht geschriebener Text, kein Index oder Themenzusammenfassungen, schwierig für Gelegenheitsleser.
(basierend auf 6 Leserbewertungen)
Euclidean Geometry: A First Course
Dieses Lehrbuch ist eine in sich geschlossene Darstellung der euklidischen Geometrie, eines Fachs, das seit Jahrhunderten zum Kernbestand des Lehrplans gehört. Die Diskussion ist streng, axiom-basiert und in traditioneller Weise geschrieben, getreu dem euklidischen Geist.
Transformationen in der euklidischen Ebene werden als Teil der Axiomatik und als Werkzeug zur Lösung von Konstruktionsproblemen einbezogen. Das Lehrbuch kann für den Unterricht in der Oberstufe oder für einen Einführungskurs am College verwendet werden. Es ist besonders empfehlenswert für Schulen mit erweiterten mathematischen Programmen und für Heimschüler, die eine strenge, traditionelle Diskussion der Geometrie suchen.
Der Text enthält über 1200 Fragen und Probleme, die von einfach bis anspruchsvoll reichen.
Der Lösungsteil des Buches enthält etwa 200 Antworten und Hinweise auf Lösungen und über 100 detaillierte Lösungen mit Beweisen und Konstruktionen. Weitere Lösungen und einige Ergänzungen für Lehrer sind im Instructor's Manual enthalten, das als separates Buch herausgegeben wird.
Buchbesprechungen: In Bezug auf die Darstellung ist dieser Text strenger als jedes mir bekannte Lehrbuch für die Oberstufe. Er basiert auf einem System von Axiomen, die die Inzidenz beschreiben, einen Begriff der Kongruenz von Liniensegmenten postulieren und die Existenz ausreichender starrer Bewegungen ("freie Mobilität") annehmen... Meine Bauchreaktion auf das Buch ist: Wäre es nicht wunderbar, wenn amerikanische High-School-Schüler diese ernsthafte mathematische Behandlung der elementaren Geometrie zu sehen bekämen, statt all des Schrotts, der ihnen in den bestehenden Lehrbüchern präsentiert wird.
Dieses Buch macht keine Zugeständnisse an die TV-Generation von Schülern, die hübsche Bilder, Seitenleisten, Rätsel, Spiele, historische Bezüge, Cartoons und all die farbigen Bilder wollen (oder sind es die Verleger, die es für sie wollen?), die die Seiten eines typischen modernen Lehrbuchs überfüllen, während der mathematische Inhalt mit jeder weiteren Ausgabe mehr und mehr verwässert wird. Professor Robin Hartshorne, Universität von Kalifornien in Berkeley. Das Lehrbuch "Euklidische Geometrie" von Mark Solomonovich füllt eine große Lücke in der Fülle der mathematischen Lehrbücher - es bietet eine Darstellung der klassischen Geometrie mit Schwerpunkt auf Logik und strengen Beweisen...
Ich würde mich freuen, wenn dieses Lehrbuch in kanadischen Schulen im Rahmen eines verbesserten Geometrie-Lehrplans eingesetzt würde. Bis es so weit ist, empfehle ich "Euklidische Geometrie" von Mark Solomonovich für den Einsatz in Mathematik-Vertiefungsprogrammen in Kanada und den USA.
Professor Yuly Billig, Carlton Universität.